First stars with MOONS: some ideas for the Bulge Stefania Salvadori
 Marie Sklodowska-Curie Fellow

THE FIRST STARS

e.g. Omukai\&Nishi98;Abel+02;Bromm+02;Omukai\&Palla03;Bromm\&Loeb04;Tan\&McKee04/08;O'Shea\&Norman06; Ripamonti+02; Schleicher+09;Turk+09/11;Yoshida+06/08;H osokawa+11/15; Clark+11; Greif+12; Hirano+14/15; Stacy+14/16

FIRST STARS

-What was the mass range of the first stars?
-The Initial Mass Function?

- Did low-mass $\mathrm{Z}=0$ stars form?

WHERE ARE THE MOST ANCIENT STARS ?

[^0]N-body simulation of a Milky Way analogue + semi-analytical chemical evolution model

The oldest stars are concentrated into the inner part of the Galaxy (see also Diemand +05 ; Tumlinson 10)

AND THE MOST METAL-POOR STARS ?

Extremely metal-poor stars are more concentrated into the inner part of the Galaxy (see also e.g. Scannapieco+06; Tumlinson 10; Zolotov+10; Starkenburg+ submitted)

PROBLEM: HIGHLY POPULATED REGION

Quantifying the density distribution of stars with different $[\mathrm{Fe} / \mathrm{H}]$ at different R_{G}

STELLAR DENSITY PROFILES AT DIFFERENT [Fe/H]

see also De Lucia \& Helmi 08; Zolotov+10; Tumlinson+10; Carollo+08/12

The Fraction of VMP to MP stars increases with Galacto-centric distance: 17% @ $<20 \mathrm{kpc},>40 \%$ @ $\mathrm{r}<20 \mathrm{kpc}-$ see also Carollo+

METALLICITY DISTRIBUTION OF BULGE STARS

e.g. Ness+12; Chiappini+12; Griego+13; Howes+14; Howes+16

Ness +12

ARGOS Bulge Survey

Table 1. Metallicity distribution of the 14150 stars with $\left|R_{\mathrm{G}}\right| \leq 3.5 \mathrm{kpc}$.

Number of stars	$[\mathrm{Fe} / \mathrm{H}]$ range
16 stars	$[\mathrm{Fe} / \mathrm{H}] \leq-2.0$
84 stars	$-2.0<[\mathrm{Fe} / \mathrm{H}] \leq-1.5$
522 stars	$-1.5 \leq[\mathrm{Fe} / \mathrm{H}]<-1.0$
4219 stars	$-1.0<[\mathrm{Fe} / \mathrm{H}] \leq-0.5$
6914 stars	$-0.5<[\mathrm{Fe} / \mathrm{H}] \leq 0$
2392 stars	$[\mathrm{Fe} / \mathrm{H}]>0$

Fraction $([\mathrm{Fe} / \mathrm{H}] \leq-2 /[\mathrm{Fe} / \mathrm{H}] \leq-1) \approx 2.5 \%$

Fraction $([\mathrm{Fe} / \mathrm{H}] \leq-2 /$ total $) \approx 0.1 \%$

EXTREMELY METAL-POOR BULGE STARS

EMBLA survey - Howes+
A 3 step process to get chemical abundances of the most metal-poor Bulge stars

EXTREMELY METAL-POOR BULGE STARS

EMBLA survey - Howes+

A 3 step process to get chemical abundances of the most metal-poor Bulge stars
Pre-selection using SkyMapper photometry

Spectroscopic confirmation of VMP candidates with the
AAOmega multi-object spectrograph

EXTREMELY METAL-POOR BULGE STARS

EMBLA survey - Howes+
A 3 step process to get chemical abundances of the most metal-poor Bulge stars
Pre-selection using SkyMapper photometry

Spectroscopic confirmation of VMP candidates with the
AAOmega multi-object spectrograph

High-resolution spectroscopy of the most metal-poor candidates

```
Howes+16:
```

10 bulge stars @ $[\mathrm{Fe} / \mathrm{H}]<-1.7$
(MIKE/Magellan)
Chemical elements from C to Ni

CHEMICAL PROPERTIES OF EMP STARS IN THE BULGE

23 extremely metal-poor stars observed with the Mike/Magellan HR spectrograph

Apparent lack of carbon-enhanced metal-poor stars. Low number statistics ? Note: only 7 stars with accurate kinematics and tightly bound orbits

Candidates pre-selection via photometry. Which data/telescope can we use?

- Skymapper data ? If available! Properties: 1.3 m telescope, six bandpasses in 5.7-degree field of view. Narrow v-band filter centered on the CaII K line.
- Gaia data? Possibly, although the Bulge is only partially covered. Key point: candidates will also have accurate kinematics and distances.
- CFHT ? Properties: 3.6m optical/infrared telescope. Previous experience from the Pristine survey (CaHK filter) can be used to build-up a Bulge survey.
- VST ? Properties: 2.6m telescope, wide weavelength range (0.3-1.0 microns). Ad hoc narrow filter (SkyMapper/Pristine) can be constructed \rightarrow Bulge survey

Assuming to have enough pre-selected candidates and to observe ~ 200 targets per night we can obtain 20,000 spectra in 100 nights. Expected \# of VMPs from Howes $+>3 \%$ meaning >600 stars. But we can do better with a better filter.

[^0]: e.g. White+03; Diemand+04; Scannapieco+06; de Lucia \& Helmi 08; Salvadori+10; Tumlinson 10; Zolotov+10; Chiappini+

