MOONS to study Local Group dwarff galaxies

Nicolas Martin
(Strasbourg Obs.
\& MPIA, Heidelberg)

MOONS to study Local Group dwarf galaxies

PAndAS view of M3I
Martin et al. (20|3)

Cosmology on (dwarf) galaxy scales

Contribution of galaxies of mass M to the universe's stellar content

- Dwarf galaxies are the most darkmatter dominated systems
- insight into small-scale DM distribution
- low end of halo mass function
- baryons have small impact on system (high M/L)
- study of faint-end galaxy formation: hierarchical? SN feedback? reionization?

Which dwarf galaxies and why?

- MOONS' small field of view, number of fibers, southern hemisphere
\rightarrow brightest Milky Way dwarf galaxies (Carina, Fornax, Sculptor, ... 4-5 in total)
\rightarrow chemodynamics of IO00s of stars to:
- constrain the mass and shape of DM halo (detection of DM annihilation, core/cusp)
- study the presence of stellar sub-structures (hierarchical formation, dwarf-dwarf mergers)
- carefully study impact of binaries stars (mainly unknown)
\rightarrow chemodynamical decomposition of LMC/SMC outskirts
- hierarchical formation of their stellar halo?
- study of a on-going dwarf/dwarf interaction
- More difficult but possible (and should be done!)
\rightarrow M3I, M3I dwarf galaxies, M33, isolated Local Group dwarf galaxies (Sextans A, B, NGC $3109, \ldots$)

A hope for DM direct detection

- Faintest (most-DM dominated) dwarf galaxies may be best but
- small number of observable member stars, doubts on virialization, ...
\rightarrow better to observe brighter systems
- Now systems with Ik-2k observed velocities (Fornax, Sculptor)
- significantly above background estimations but still large uncertainties on modeling
- need more data, more galaxies for stacking, ...

Revisiting the cusp-core issue

- Internal dynamics of multiple stellar populations \rightarrow differential tests of DM mass within rh of population \rightarrow slope of DM profile
- currently done in 2 dwarf galaxies with $1,000+$ good quality velocities and metallicities.

Revisiting the cusp-core issue

- Internal dynamics of multiple stellar populations \rightarrow differential tests of DM mass within rh of population \rightarrow slope of DM profile
- currently done in 2 dwarf galaxies with $1,000+$ good quality velocities and metallicities.

Elliptical radius [degree]

Revisiting the cusp-core issue

- Internal dynamics of multiple stellar populations \rightarrow differential tests of DM mass within rh of population \rightarrow slope of DM profile
- currently done in 2 dwarf galaxies with 1,000+ good quality velocities and metallicities. Still uncertain...

Revisiting the cusp-core issue

- Need more tests and a mass-range as baryons expected to flatten central DM slope

The hierarchical formation of dwarf galaxies

- Mounting evidence that dwarf galaxies aren't simple systems
- multiple stellar populations
- presence of sub-structures
\rightarrow evidence of hierchical formation?

What is needed?

- Samples of I-IOk radial velocities and (at least) [Fe/H]
- red giant branch stars in Fornax, Sculptor, Carina, Sextans(, Sagittarius)
- calcium triplet observations
- medium resolution for most ($g<23$)
- high resolution for brighter stars (chemical abundances \rightarrow Vanessa's talk)
- I OOs stars/deg², especially since numerous foreground contaminants
- Need heavily multiplexed, wide field of view spectrograph on 8m-class telescope \rightarrow MOONS

The SMC/LMC system

- Evident hierarchical formation of stellar halos of L* galaxies.
- What about lower mass systems?
- LMC/SMC have cohort of faint dwarf galaxies
- Interacting system
- Stellar halos observed over 10+kpc?

The SMC/LMC system

- Evident hierarchical formation of stellar halos of L* galaxies.
- What about lower mass systems?
- LMC/SMC have cohort of faint dwarf galaxies
- Interacting system
- Stellar halos observed over $10+\mathrm{kpc}$?

Evidence for SMC \& LMC stellar halo

- From photometry alone
- Kinematics of disk? halo?
- Sub-structure?
- Origin?
- How does it fit in hierchical universe?
- How does it fit in SMC/LMC interaction?
- Need phase-space study
- but swamped by foreground
- need southern, wide-FoV, MOS on 8 m class telescope \rightarrow MOONS

Nidever et al. (201 I)

MOONS \& Local Group dwarf galaxies

- MOONS perfect for chemodynamical study of dwarf galaxies to:
- provide better constraints of astrophysical uncertainty on indirect DM annihilation signal
- constrain presence of core/cusp in most DM-dominated systems
- constrain presence of predicted dwarfldwarf mergers
- study impact of binaries
- MOONS perfect for chemodynamical study of SMC/LMC outskirts:
- halo? consequence of SMC/LMC interaction \rightarrow constraints on low-mass hierchical formation
- Other targets are possible:
- M3I + M33 + their bright satellites (And II, ...)
- Dwarf irregular galaxies at edge of Local Group

